options

Stylizer

nvhpc_25.1_sve2_128_fast.13952.all.one.maqaonvhpc_25.1_sve2_128.13952.all.one.maqaonvhpc_25.1_novect.13952.all.one.maqaollvm_20.1.1_sve2_128_fast.13952.all.one.maqaollvm_20.1.1_sve2_128.13952.all.one.maqaollvm_20.1.1_neon.13952.all.one.maqaollvm_20.1.1_novect.13952.all.one.maqaogcc_14.2.0_sve2_128_fast.13952.all.one.maqaogcc_14.2.0_sve2_128.13952.all.one.maqaogcc_14.2.0_neon.13952.all.one.maqaogcc_14.2.0_novect.13952.all.one.maqao

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

Not available for this run

Not available for this run

Not available for this run

Not available for this run

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Not available for this run

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 3.00 / 3 ] Architecture specific option -mcpu is used

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -mcpu=native ).

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 4 / 4 ] Application profile is long enough (67.46 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (67.88 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (68.05 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (52.69 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (53.39 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (58.65 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (56.51 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (51.58 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (51.08 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (51.45 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (51.06 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.69 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.89 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 1.06 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.56 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.75 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.68 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.74 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.56 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.55 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.53 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.91 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer

nvhpc_25.1_sve2_128_fast.13952.all.one.maqaonvhpc_25.1_sve2_128.13952.all.one.maqaonvhpc_25.1_novect.13952.all.one.maqaollvm_20.1.1_sve2_128_fast.13952.all.one.maqaollvm_20.1.1_sve2_128.13952.all.one.maqaollvm_20.1.1_neon.13952.all.one.maqaollvm_20.1.1_novect.13952.all.one.maqaogcc_14.2.0_sve2_128_fast.13952.all.one.maqaogcc_14.2.0_sve2_128.13952.all.one.maqaogcc_14.2.0_neon.13952.all.one.maqaogcc_14.2.0_novect.13952.all.one.maqao

[ 3 / 4 ] CPU activity is below 90% (85.19%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (85.13%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (85.19%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (81.21%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (81.53%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (82.84%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (82.44%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (81.36%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (81.08%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (81.29%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] CPU activity is below 90% (81.21%)

CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 4 / 4 ] Affinity is good (98.29%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (98.30%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (98.10%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.31%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.38%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.78%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.63%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.68%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.41%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.45%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.31%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (79.29%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (79.28%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (79.06%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (75.66%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (75.98%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (69.17%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (72.26%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (75.51%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (75.76%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (75.70%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (75.49%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (28.71%) lower than cumulative innermost loop coverage (50.58%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (24.54%) lower than cumulative innermost loop coverage (54.74%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (24.55%) lower than cumulative innermost loop coverage (54.51%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (19.59%) lower than cumulative innermost loop coverage (56.08%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (14.32%) lower than cumulative innermost loop coverage (61.66%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (13.03%) lower than cumulative innermost loop coverage (56.15%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (13.29%) lower than cumulative innermost loop coverage (58.97%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (21.58%) lower than cumulative innermost loop coverage (53.94%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (21.63%) lower than cumulative innermost loop coverage (54.13%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (21.63%) lower than cumulative innermost loop coverage (54.07%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (20.96%) lower than cumulative innermost loop coverage (54.52%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 4 ] A significant amount of threads are idle (20.79%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (19.33%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (19.14%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (28.36%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (23.36%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (24.22%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (21.38%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (23.01%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (27.60%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (24.51%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 3 / 4 ] A significant amount of threads are idle (24.78%)

On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (50.58%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (54.74%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (54.51%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (56.08%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (61.66%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (56.15%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (58.97%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (53.94%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (54.13%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (54.07%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (54.52%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.43%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.75%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.69%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.71%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.69%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.69%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.69%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.70%) is spend in Libm/SVML (special functions)

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (29.07%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (28.66%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (28.48%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (32.46%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (33.21%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (30.31%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (32.15%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (27.61%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (27.72%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (27.71%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (27.59%), representing an hotspot for the application

Optimizer

Analysisr_1r_2r_3r_4r_5r_6r_7r_8r_9r_10r_11
Loop Computation IssuesPresence of expensive FP instructions34434444444
Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA02010001110
Presence of a large number of scalar integer instructions34667677777
Control Flow IssuesPresence of calls22244342223
Presence of 2 to 4 paths10012220001
Presence of more than 4 paths22222120000
Non-innermost loop11121112222
Data Access IssuesPresence of constant non-unit stride data access44234444443
Presence of indirect access11113331110
Vectorization RoadblocksPresence of calls22244342223
Presence of 2 to 4 paths10012220001
Presence of more than 4 paths34443235556
Non-innermost loop11121112222
Presence of constant non-unit stride data access44234444443
Presence of indirect access11113331110
×