options

CLASS_parametric - 2025-04-09 16:26:33 - MAQAO 2.21.3

Help is available by moving the cursor above any symbol or by checking MAQAO website.

  • run_0
  • run_1
  • run_2
  • run_3
  • run_4
  • run_5
  • run_6

Stylizer  

[ 4 / 4 ] Application profile is long enough (49.61 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)

To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 0 / 2 ] Too much execution time spent in category "Others" (42.25 %)

If the category "Others" represents more than 20% of the execution time, it means that the application profile misses a representative part of the application. Examine functions details to properly identify “Others” category components. Rerun after adding most represented library names (e.g. more than 20% of coverage) to external_libraries (the names can be directly provided by ONE View)

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 0 / 0 ] Fastmath not used

Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions.

Strategizer  

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (34.32%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] CPU activity is good

CPU cores are active 96.93% of time

[ 4 / 4 ] Threads activity is good

On average, more than 96.93% of observed threads are actually active

[ 3 / 4 ] Affinity stability is lower than 90% (88.93%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (23.49%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (33.56%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.77%) lower than cumulative innermost loop coverage (33.56%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (1.01%) is spend in Libm/SVML (special functions)

Optimizer

Loop IDAnalysisPenalty Score
Loop 1637 - libCLASSpkg.so+Execution Time: 23 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Loop Computation Issues+4
[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.4
Loop 5 - libCLASSpkg.so+Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Control Flow Issues+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Vectorization Roadblocks+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Loop 777 - libCLASSpkg.so+Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 11.00 %
Control Flow Issues+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+7
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 106 - libCLASSpkg.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Control Flow Issues+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Vectorization Roadblocks+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Loop 1629 - libCLASSpkg.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 8.55 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (7 paths) - Simplify control structure. There are 7 issues ( = paths) costing 1 point each with a malus of 4 points.11
Vectorization Roadblocks+12
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Too many paths (7 paths) - Simplify control structure. There are 7 issues ( = paths) costing 1 point each with a malus of 4 points.11
Loop 619 - libCLASSpkg.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Control Flow Issues+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Vectorization Roadblocks+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Loop 91 - libCLASSpkg.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Control Flow Issues+1
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
Data Access Issues+2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Vectorization Roadblocks+3
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 1 issues (= calls) costing 1 point each.1
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each.2
Loop 1635 - libCLASSpkg.so+Execution Time: 0 % - Vectorization Ratio: 28.57 % - Vector Length Use: 12.50 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+11
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Vectorization Roadblocks+11
[SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points.9
[SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points.2
Loop 4 - libCLASSpkg.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 9.69 %
Loop Computation Issues+2
[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.2
Control Flow Issues+4
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each.2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
Data Access Issues+6
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
[SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points.2
Vectorization Roadblocks+8
[SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each.2
[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each.2
[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each.4
Loop 149 - libCLASSpkg.so+Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 %
Control Flow Issues+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
Vectorization Roadblocks+10
[SA] Too many paths (6 paths) - Simplify control structure. There are 6 issues ( = paths) costing 1 point each with a malus of 4 points.10
×