gcc_o3_m64_size512-512-768_m4-4-4/ | gcc_ofast_m64_size512-512-768_m4-4-4/ | armclang_o3_m64_size512-512-768_m4-4-4/ | armclang_ofast_m64_size512-512-768_m4-4-4/ |
---|---|---|---|
[ 3.00 / 3 ] Architecture specific option -march=armv8.4-a+crypto+rcpc+sha3+sm4+sve+rng+ssbs+i8mm+bf16+nodotprod is used | [ 3.00 / 3 ] Architecture specific option -march=armv8.4-a+crypto+rcpc+sha3+sm4+sve+rng+ssbs+i8mm+bf16+nodotprod is used | [ 3.00 / 3 ] Architecture specific option -march=native is used | [ 3.00 / 3 ] Architecture specific option -march=native is used |
[ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information Functions without compilation information (typically not compiled with -g) cumulate 0.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case. | [ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information Functions without compilation information (typically not compiled with -g) cumulate 0.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case. | [ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information Functions without compilation information (typically not compiled with -g) cumulate 0.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case. | [ 2.40 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information Functions without compilation information (typically not compiled with -g) cumulate 0.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case. |
[ 0 / 0 ] Fastmath not used Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions. | Not available for this run | Not available for this run | Not available for this run |
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code |
[ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used |
[ 4 / 4 ] Application profile is long enough (34.78 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (31.72 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (33.00 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (32.04 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. |
gcc_o3_m64_size512-512-768_m4-4-4/ | gcc_ofast_m64_size512-512-768_m4-4-4/ | armclang_o3_m64_size512-512-768_m4-4-4/ | armclang_ofast_m64_size512-512-768_m4-4-4/ |
---|---|---|---|
[ 3 / 4 ] CPU activity is below 90% (88.18%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (87.02%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (83.78%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (83.40%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. |
[ 1 / 4 ] Affinity stability is lower than 90% (30.92%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 1 / 4 ] Affinity stability is lower than 90% (30.66%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 0 / 4 ] Affinity stability is lower than 90% (27.33%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 0 / 4 ] Affinity stability is lower than 90% (27.25%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. |
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.40%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (85.21%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (95.27%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (95.05%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. |
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (28.52%) lower than cumulative innermost loop coverage (63.88%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (27.70%) lower than cumulative innermost loop coverage (57.51%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (29.11%) lower than cumulative innermost loop coverage (66.16%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (22.27%) lower than cumulative innermost loop coverage (72.77%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex |
[ 3 / 4 ] A significant amount of threads are idle (11.78%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] A significant amount of threads are idle (12.95%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] A significant amount of threads are idle (16.21%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] A significant amount of threads are idle (16.59%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. |
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. |
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (63.88%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (57.51%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (66.16%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (72.77%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. |
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations |
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) |
[ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (31.54%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (27.62%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (34.04%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (36.02%), representing an hotspot for the application |
Analysis | r_1 | r_2 | r_3 | r_4 | |
---|---|---|---|---|---|
Loop Computation Issues | Presence of expensive FP instructions | 2 | 2 | 2 | 2 |
Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA | 2 | 2 | 1 | 1 | |
Presence of a large number of scalar integer instructions | 4 | 4 | 7 | 7 | |
Control Flow Issues | Presence of 2 to 4 paths | 1 | 1 | 0 | 0 |
Presence of more than 4 paths | 0 | 0 | 1 | 1 | |
Non-innermost loop | 2 | 2 | 1 | 1 | |
Data Access Issues | Presence of constant non-unit stride data access | 9 | 9 | 3 | 3 |
Presence of indirect access | 2 | 2 | 7 | 7 | |
Vectorization Roadblocks | Presence of 2 to 4 paths | 1 | 1 | 0 | 0 |
Presence of more than 4 paths | 1 | 1 | 1 | 1 | |
Non-innermost loop | 2 | 2 | 1 | 1 | |
Presence of constant non-unit stride data access | 9 | 9 | 3 | 3 | |
Presence of indirect access | 2 | 2 | 7 | 7 |