options

Stylizer

n1n2n4n8

[ 2.99 / 3 ] Architecture specific option -march=armv8-a is used

[ 3.00 / 3 ] Architecture specific option -march=armv8-a is used

[ 2.79 / 3 ] Architecture specific option -march=armv8-a is used

[ 3.00 / 3 ] Architecture specific option -march=armv8-a is used

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information

Functions without compilation information (typically not compiled with -g) cumulate 100.00% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.53 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.55 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.59 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.62 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 3 / 3 ] Optimization level option is correctly used

[ 3.00 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3.00 / 3 ] Optimization level option is correctly used

[ 4 / 4 ] Application profile is long enough (3737.04 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (1915.87 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (1022.29 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (575.77 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

Strategizer

n1n2n4n8

[ 4 / 4 ] CPU activity is good

CPU cores are active 99.30% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 98.99% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 98.03% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 97.30% of time

[ 0 / 4 ] Affinity stability is lower than 90% (0.89%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 0 / 4 ] Affinity stability is lower than 90% (0.97%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 0 / 4 ] Affinity stability is lower than 90% (1.39%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 0 / 4 ] Affinity stability is lower than 90% (1.14%)

Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to cores --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (82.39%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (78.62%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (74.54%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (68.65%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (2.94%) lower than cumulative innermost loop coverage (79.45%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (2.98%) lower than cumulative innermost loop coverage (75.64%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.15%) lower than cumulative innermost loop coverage (71.39%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.53%) lower than cumulative innermost loop coverage (65.12%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 4 / 4 ] Threads activity is good

On average, more than 99.31% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 99.01% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 98.04% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 97.33% of observed threads are actually active

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (79.45%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (75.64%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (71.39%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (65.12%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (7.48%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (5.81%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (5.63%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (4.92%), representing an hotspot for the application

Optimizer

Analysisr_1r_2r_3r_4
Loop Computation IssuesPresence of expensive FP instructions2222
Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA9987
Presence of a large number of scalar integer instructions99910
Bottleneck in the front-end2234
Control Flow IssuesPresence of calls1111
Presence of 2 to 4 paths5544
Presence of more than 4 paths1111
Data Access IssuesPresence of constant non-unit stride data access3345
Presence of indirect access3322
Vectorization RoadblocksPresence of calls1111
Presence of 2 to 4 paths5544
Presence of more than 4 paths1111
Presence of constant non-unit stride data access3345
Presence of indirect access3322
×