Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (17.64 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.92 / 3 ] Optimization level option is correctly used
[ 2.92 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 2.92 / 3 ] Architecture specific option -axCORE is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.16 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (58.84%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (19.95%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (44.31%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (14.53%) lower than cumulative innermost loop coverage (44.31%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (0%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Module | Analysis | Penalty Score | Coverage (%) | Vectorization Ratio (%) | Vector Length Use (%) |
---|---|---|---|---|---|---|
►4023 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 4 | 19.95 | 52.17 | 19.02 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
►4021 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 1002 | 8.2 | 0 | 12.5 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 | ||||
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►5880 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 4 | 6.36 | 52.17 | 19.02 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
►5890 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 4 | 5.85 | 52.17 | 19.02 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
►4020 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 1000 | 1.73 | 0 | 12.5 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►6222 | exec | Inefficient vectorization. | 4 | 1 | 100 | 50 |
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►5879 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 1002 | 1 | 0 | 12.5 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 | ||||
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►5889 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 1002 | 0.9 | 16.67 | 14.58 |
○ | [SA] Too many paths (at least 1000 paths) - Simplify control structure. There are at least 1000 issues ( = paths) costing 1 point. | 1000 | ||||
○ | [SA] Non innermost loop (Outermost) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►5958 | exec | Inefficient vectorization. | 10 | 0.76 | 100 | 25 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 2 issues ( = arrays) costing 2 points each | 4 | ||||
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►5450 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 15 | 0.67 | 0 | 12.5 |
○ | [SA] Too many paths (9 paths) - Simplify control structure. There are 9 issues ( = paths) costing 1 point each with a malus of 4 points. | 13 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 |