Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (78.34 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 1.76 / 3 ] Some functions are compiled with a low optimization level (O0 or O1)
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy.
[ 1.76 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information
Functions without compilation information (typically not compiled with -g) cumulate 41.41% of the time spent in analyzed modules. Check that -g is present. Remark: if -g is indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case.
[ 1.76 / 3 ] Compilation of some functions is not optimized for the target processor
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (55.33%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
No hotspot found in the application (greatest loop coverage is 3.82%), but the twenty hottest loops cumulated coverage is representative enough (48.67% > 20%)
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (55.20%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.13%) lower than cumulative innermost loop coverage (55.2%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (0%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Module | Analysis | Penalty Score | Coverage (%) | Vectorization Ratio (%) | Vector Length Use (%) |
---|---|---|---|---|---|---|
►115 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 128 | 3.82 | 99.35 | 82.59 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 16 issues (= instructions) costing 4 points each. | 64 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 7 issues (= instructions) costing 4 points each. | 28 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 6 issues ( = indirect data accesses) costing 4 point each. | 24 | ||||
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, BROADCAST) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each. | 2 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►665 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 353 | 3.48 | 98.29 | 84.16 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 52 issues (= instructions) costing 4 points each. | 208 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 18 issues (= instructions) costing 4 points each. | 72 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 15 issues ( = indirect data accesses) costing 4 point each. | 60 | ||||
○ | [SA] Presence of special instructions executing on a single port (BROADCAST) - Simplify data access and try to get stride 1 access. There are 3 issues (= instructions) costing 1 point each. | 3 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►150 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 372 | 3.47 | 99.24 | 83.3 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 56 issues (= instructions) costing 4 points each. | 224 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 18 issues (= instructions) costing 4 points each. | 72 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 17 issues ( = indirect data accesses) costing 4 point each. | 68 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►123 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 136 | 3.39 | 99.34 | 81.16 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 16 issues (= instructions) costing 4 points each. | 64 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 8 issues ( = indirect data accesses) costing 4 point each. | 32 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 7 issues (= instructions) costing 4 points each. | 28 | ||||
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, BROADCAST) - Simplify data access and try to get stride 1 access. There are 2 issues (= instructions) costing 1 point each. | 2 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►95 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 292 | 3.28 | 98.82 | 76.91 |
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 40 issues (= instructions) costing 4 points each. | 160 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 23 issues ( = indirect data accesses) costing 4 point each. | 92 | ||||
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 8 issues (= instructions) costing 4 points each. | 32 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►246 | exec | Inefficient vectorization. | 182 | 3.19 | 100 | 82.69 |
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 28 issues (= instructions) costing 4 points each. | 112 | ||||
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 16 issues (= instructions) costing 4 points each. | 64 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►192 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 108 | 3.08 | 97.44 | 86.06 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 16 issues (= instructions) costing 4 points each. | 64 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 5 issues (= instructions) costing 4 points each. | 20 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 4 issues ( = indirect data accesses) costing 4 point each. | 16 | ||||
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►99 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 195 | 2.87 | 99.11 | 82.54 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 20 issues (= instructions) costing 4 points each. | 80 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 13 issues (= instructions) costing 4 points each. | 52 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 12 issues ( = indirect data accesses) costing 4 point each. | 48 | ||||
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, BROADCAST) - Simplify data access and try to get stride 1 access. There are 3 issues (= instructions) costing 1 point each. | 3 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points. | 2 | ||||
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►107 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 195 | 2.58 | 99.08 | 83.28 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 20 issues (= instructions) costing 4 points each. | 80 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 13 issues (= instructions) costing 4 points each. | 52 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 12 issues ( = indirect data accesses) costing 4 point each. | 48 | ||||
○ | [SA] Presence of special instructions executing on a single port (BLEND/MERGE, BROADCAST) - Simplify data access and try to get stride 1 access. There are 3 issues (= instructions) costing 1 point each. | 3 | ||||
○ | [SA] More than 20% of the loads are accessing the stack - Perform loop splitting to decrease pressure on registers. This issue costs 2 points. | 2 | ||||
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | [SA] Inefficient vectorization: use of masked instructions - Simplify control structure. The issue costs 2 points. | 2 | ||||
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►121 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 82 | 2.53 | 97.56 | 76.98 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 8 issues (= instructions) costing 4 points each. | 32 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 6 issues (= instructions) costing 4 points each. | 24 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 5 issues ( = indirect data accesses) costing 4 point each. | 20 | ||||
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 2 issues (= calls) costing 1 point each. | 2 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 |