orig_default | gcc_default | icx_2 | gcc_5 |
---|---|---|---|
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. |
[ 2.99 / 3 ] Architecture specific option -x Host is used | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor -march=x86-64 option is used but it is not specific enough to produce efficient code. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). Application run on the GRANITE_RAPIDS micro-architecture while the code was specialized for GRANITERAPIDS. | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor Application run on the GRANITE_RAPIDS micro-architecture while the code was specialized for graniterapids. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). |
[ 2.99 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 2.99 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. |
[ 4 / 4 ] Application profile is long enough (92.39 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (99.71 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (93.20 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (95.12 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. |
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code |
[ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used |
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. |
orig_default | gcc_default | icx_2 | gcc_5 |
---|---|---|---|
[ 3 / 4 ] CPU activity is below 90% (85.56%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (88.71%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (85.34%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (89.45%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. |
[ 3 / 4 ] Affinity stability is lower than 90% (87.54%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 3 / 4 ] Affinity stability is lower than 90% (89.30%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 3 / 4 ] Affinity stability is lower than 90% (87.14%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 4 / 4 ] Affinity is good (90.16%) Threads are not migrating to CPU cores: probably successfully pinned |
[ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%) |
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.37%) lower than cumulative innermost loop coverage (87.25%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.14%) lower than cumulative innermost loop coverage (87.09%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.35%) lower than cumulative innermost loop coverage (87.66%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.43%) lower than cumulative innermost loop coverage (88.20%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex |
[ 3 / 4 ] A significant amount of threads are idle (14.95%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] A significant amount of threads are idle (11.76%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] A significant amount of threads are idle (14.87%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] A significant amount of threads are idle (11.22%) On average, more than 10% of observed threads are idle. Such threads are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. |
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. |
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (87.25%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (87.09%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (87.66%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (88.20%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. |
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations |
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) |
[ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (41.27%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (40.90%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (41.35%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (40.76%), representing an hotspot for the application |
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (90.62%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (90.23%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (91.01%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.64%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. |
Analysis | r0 | r1 | r2 | r3 | |
---|---|---|---|---|---|
Loop Computation Issues | Presence of expensive FP instructions | 5 | 5 | 5 | 6 |
Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA | 0 | 7 | 0 | 1 | |
Presence of a large number of scalar integer instructions | 8 | 8 | 8 | 8 | |
Control Flow Issues | Presence of calls | 3 | 4 | 3 | 4 |
Presence of 2 to 4 paths | 4 | 3 | 4 | 0 | |
Presence of more than 4 paths | 6 | 7 | 6 | 10 | |
Non-innermost loop | 3 | 3 | 3 | 3 | |
Data Access Issues | Presence of constant non-unit stride data access | 4 | 3 | 4 | 0 |
Presence of indirect access | 4 | 3 | 4 | 0 | |
More than 10% of the vector loads instructions are unaligned | 0 | 4 | 0 | 0 | |
Presence of special instructions executing on a single port | 4 | 6 | 4 | 0 | |
More than 20% of the loads are accessing the stack | 5 | 7 | 5 | 6 | |
Vectorization Roadblocks | Presence of calls | 3 | 4 | 3 | 4 |
Presence of 2 to 4 paths | 4 | 3 | 4 | 0 | |
Presence of more than 4 paths | 6 | 7 | 6 | 10 | |
Non-innermost loop | 3 | 3 | 3 | 3 | |
Presence of constant non-unit stride data access | 4 | 3 | 4 | 0 | |
Presence of indirect access | 4 | 3 | 4 | 0 | |
Inefficient Vectorization | Presence of special instructions executing on a single port | 4 | 6 | 4 | 0 |