options

Stylizer

orig_defaulticx_defaultgcc_defaultaocc_1icx_2gcc_5

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.

[ 3.00 / 3 ] Architecture specific option -march=native is used

[ 0 / 3 ] Compilation of some functions is not optimized for the target processor

-xHost or -march=native should not be used with Intel compilers while targeting (or compiling on) non-Intel processors, use -mavx2 Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).

[ 3.00 / 3 ] Architecture specific option -march=znver is used

[ 3.00 / 3 ] Architecture specific option -march=znver is used

[ 2.97 / 3 ] Architecture specific option -axCORE is used

[ 3.00 / 3 ] Architecture specific option -march=znver is used

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 2.97 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 2.97 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.

[ 4 / 4 ] Application profile is long enough (101.38 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (99.04 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (102.08 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (100.19 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (98.45 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 4 / 4 ] Application profile is long enough (102.95 s)

To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)

To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 3 / 3 ] Optimization level option is correctly used

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.

Strategizer

orig_defaulticx_defaultgcc_defaultaocc_1icx_2gcc_5

[ 4 / 4 ] CPU activity is good

CPU cores are active 98.18% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 97.79% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 97.94% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 98.50% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 98.23% of time

[ 4 / 4 ] CPU activity is good

CPU cores are active 97.95% of time

[ 4 / 4 ] Affinity is good (98.31%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (97.95%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (98.04%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (98.63%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (98.34%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 4 / 4 ] Affinity is good (98.05%)

Threads are not migrating to CPU cores: probably successfully pinned

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Functions mostly use all threads

Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.42%) lower than cumulative innermost loop coverage (89.64%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.06%) lower than cumulative innermost loop coverage (89.39%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (2.47%) lower than cumulative innermost loop coverage (90.83%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.44%) lower than cumulative innermost loop coverage (89.81%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (3.29%) lower than cumulative innermost loop coverage (89.78%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 3 / 3 ] Cumulative Outermost/In between loops coverage (4.08%) lower than cumulative innermost loop coverage (88.96%)

Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex

[ 4 / 4 ] Threads activity is good

On average, more than 97.92% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 97.59% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 97.75% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 98.16% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 97.91% of observed threads are actually active

[ 4 / 4 ] Threads activity is good

On average, more than 97.67% of observed threads are actually active

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations

BLAS2 calls usually could make a poor cache usage and could benefit from inlining.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (89.64%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (89.39%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (90.83%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (89.81%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (89.78%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (88.96%)

If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations

It could be more efficient to inline by hand BLAS1 operations

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (42.24%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (39.76%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (40.32%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (40.88%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (40.09%), representing an hotspot for the application

[ 4 / 4 ] Loop profile is not flat

At least one loop coverage is greater than 4% (39.70%), representing an hotspot for the application

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (93.06%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.44%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (93.29%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (93.25%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (93.07%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (93.05%)

If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.

Optimizer

Analysisr0r1r2r3r4r5
Loop Computation IssuesPresence of expensive FP instructions455456
Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA101011
Presence of a large number of scalar integer instructions567668
Control Flow IssuesPresence of calls234234
Presence of 2 to 4 paths443440
Presence of more than 4 paths4574410
Non-innermost loop223213
Data Access IssuesPresence of constant non-unit stride data access653660
Presence of indirect access543550
Presence of special instructions executing on a single port451450
More than 20% of the loads are accessing the stack447436
Vectorization RoadblocksPresence of calls234234
Presence of 2 to 4 paths443440
Presence of more than 4 paths4574410
Non-innermost loop223213
Presence of constant non-unit stride data access653660
Presence of indirect access543550
Inefficient VectorizationPresence of special instructions executing on a single port451450
Use of masked instructions100000
×