Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (16.32 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3.00 / 3 ] Optimization level option is correctly used
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3.00 / 3 ] Architecture specific option -march=sapphirerapids is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.27%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (28.78%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (98.27%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.00%) lower than cumulative innermost loop coverage (98.27%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (0%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 3 - exec | Execution Time: 28 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 36 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 18 issues ( = data accesses) costing 2 point each. | 36 |
►Vectorization Roadblocks | 36 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 18 issues ( = data accesses) costing 2 point each. | 36 |
►Loop 4 - exec | Execution Time: 28 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 30 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 15 issues ( = data accesses) costing 2 point each. | 30 |
►Vectorization Roadblocks | 30 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 15 issues ( = data accesses) costing 2 point each. | 30 |
►Loop 5 - exec | Execution Time: 20 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 28 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 14 issues ( = data accesses) costing 2 point each. | 28 |
►Vectorization Roadblocks | 28 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 14 issues ( = data accesses) costing 2 point each. | 28 |
►Loop 6 - exec | Execution Time: 20 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Data Access Issues | 24 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 12 issues ( = data accesses) costing 2 point each. | 24 |
►Vectorization Roadblocks | 24 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 12 issues ( = data accesses) costing 2 point each. | 24 |
►Loop 7 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 8 - exec | Execution Time: 0 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Data Access Issues | 30 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 15 issues ( = data accesses) costing 2 point each. | 30 |
►Vectorization Roadblocks | 30 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 15 issues ( = data accesses) costing 2 point each. | 30 |
►Loop 13 - exec | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 100.00 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |