* [MAQAO] Info: Detected 1 Lprof instances in ip-172-31-47-249.ec2.internal.
If this is incorrect, rerun with number-processes-per-node=X
[0mOMP: pid 37632 tid 37733 thread 3 bound to OS proc set {3}
OMP: pid 37632 tid 37735 thread 5 bound to OS proc set {5}
OMP: pid 37632 tid 37734 thread 4 bound to OS proc set {4}
OMP: pid 37632 tid 37739 thread 9 bound to OS proc set {9}
OMP: pid 37632 tid 37736 thread 6 bound to OS proc set {6}
OMP: pid 37632 tid 37632 thread 0 bound to OS proc set {0}
OMP: pid 37632 tid 37738 thread 8 bound to OS proc set {8}
OMP: pid 37632 tid 37737 thread 7 bound to OS proc set {7}
OMP: pid 37632 tid 37743 thread 13 bound to OS proc set {13}
OMP: pid 37632 tid 37740 thread 10 bound to OS proc set {10}
OMP: pid 37632 tid 37731 thread 1 bound to OS proc set {1}
OMP: pid 37632 tid 37742 thread 12 bound to OS proc set {12}
OMP: pid 37632 tid 37744 thread 14 bound to OS proc set {14}
OMP: pid 37632 tid 37747 thread 17 bound to OS proc set {17}
OMP: pid 37632 tid 37741 thread 11 bound to OS proc set {11}
OMP: pid 37632 tid 37732 thread 2 bound to OS proc set {2}
OMP: pid 37632 tid 37745 thread 15 bound to OS proc set {15}
OMP: pid 37632 tid 37748 thread 18 bound to OS proc set {18}
OMP: pid 37632 tid 37749 thread 19 bound to OS proc set {19}
OMP: pid 37632 tid 37746 thread 16 bound to OS proc set {16}
OMP: pid 37632 tid 37765 thread 35 bound to OS proc set {35}
OMP: pid 37632 tid 37751 thread 21 bound to OS proc set {21}
OMP: pid 37632 tid 37764 thread 34 bound to OS proc set {34}
OMP: pid 37632 tid 37755 thread 25 bound to OS proc set {25}
OMP: pid 37632 tid 37750 thread 20 bound to OS proc set {20}
OMP: pid 37632 tid 37752 thread 22 bound to OS proc set {22}
OMP: pid 37632 tid 37754 thread 24 bound to OS proc set {24}
OMP: pid 37632 tid 37759 thread 29 bound to OS proc set {29}
OMP: pid 37632 tid 37779 thread 49 bound to OS proc set {49}
OMP: pid 37632 tid 37753 thread 23 bound to OS proc set {23}
OMP: pid 37632 tid 37756 thread 26 bound to OS proc set {26}
OMP: pid 37632 tid 37758 thread 28 bound to OS proc set {28}
OMP: pid 37632 tid 37763 thread 33 bound to OS proc set {33}
OMP: pid 37632 tid 37757 thread 27 bound to OS proc set {27}
OMP: pid 37632 tid 37760 thread 30 bound to OS proc set {30}
OMP: pid 37632 tid 37780 thread 50 bound to OS proc set {50}
OMP: pid 37632 tid 37766 thread 36 bound to OS proc set {36}
OMP: pid 37632 tid 37768 thread 38 bound to OS proc set {38}
OMP: pid 37632 tid 37781 thread 51 bound to OS proc set {51}
OMP: pid 37632 tid 37796 thread 66 bound to OS proc set {66}
OMP: pid 37632 tid 37769 thread 39 bound to OS proc set {39}
OMP: pid 37632 tid 37767 thread 37 bound to OS proc set {37}
OMP: pid 37632 tid 37772 thread 42 bound to OS proc set {42}
OMP: pid 37632 tid 37762 thread 32 bound to OS proc set {32}
OMP: pid 37632 tid 37782 thread 52 bound to OS proc set {52}
OMP: pid 37632 tid 37783 thread 53 bound to OS proc set {53}
OMP: pid 37632 tid 37775 thread 45 bound to OS proc set {45}
OMP: pid 37632 tid 37770 thread 40 bound to OS proc set {40}
OMP: pid 37632 tid 37771 thread 41 bound to OS proc set {41}
OMP: pid 37632 tid 37784 thread 54 bound to OS proc set {54}
OMP: pid 37632 tid 37795 thread 65 bound to OS proc set {65}
OMP: pid 37632 tid 37774 thread 44 bound to OS proc set {44}
OMP: pid 37632 tid 37778 thread 48 bound to OS proc set {48}
OMP: pid 37632 tid 37803 thread 73 bound to OS proc set {73}
OMP: pid 37632 tid 37785 thread 55 bound to OS proc set {55}
OMP: pid 37632 tid 37786 thread 56 bound to OS proc set {56}
OMP: pid 37632 tid 37798 thread 68 bound to OS proc set {68}
OMP: pid 37632 tid 37787 thread 57 bound to OS proc set {57}
OMP: pid 37632 tid 37789 thread 59 bound to OS proc set {59}
OMP: pid 37632 tid 37776 thread 46 bound to OS proc set {46}
OMP: pid 37632 tid 37788 thread 58 bound to OS proc set {58}
OMP: pid 37632 tid 37777 thread 47 bound to OS proc set {47}
OMP: pid 37632 tid 37794 thread 64 bound to OS proc set {64}
OMP: pid 37632 tid 37801 thread 71 bound to OS proc set {71}
OMP: pid 37632 tid 37802 thread 72 bound to OS proc set {72}
OMP: pid 37632 tid 37773 thread 43 bound to OS proc set {43}
OMP: pid 37632 tid 37797 thread 67 bound to OS proc set {67}
OMP: pid 37632 tid 37761 thread 31 bound to OS proc set {31}
OMP: pid 37632 tid 37790 thread 60 bound to OS proc set {60}
OMP: pid 37632 tid 37799 thread 69 bound to OS proc set {69}
OMP: pid 37632 tid 37811 thread 81 bound to OS proc set {81}
OMP: pid 37632 tid 37806 thread 76 bound to OS proc set {76}
OMP: pid 37632 tid 37791 thread 61 bound to OS proc set {61}
OMP: pid 37632 tid 37793 thread 63 bound to OS proc set {63}
OMP: pid 37632 tid 37792 thread 62 bound to OS proc set {62}
OMP: pid 37632 tid 37805 thread 75 bound to OS proc set {75}
OMP: pid 37632 tid 37809 thread 79 bound to OS proc set {79}
OMP: pid 37632 tid 37812 thread 82 bound to OS proc set {82}
OMP: pid 37632 tid 37808 thread 78 bound to OS proc set {78}
OMP: pid 37632 tid 37807 thread 77 bound to OS proc set {77}
OMP: pid 37632 tid 37800 thread 70 bound to OS proc set {70}
OMP: pid 37632 tid 37810 thread 80 bound to OS proc set {80}
OMP: pid 37632 tid 37813 thread 83 bound to OS proc set {83}
OMP: pid 37632 tid 37814 thread 84 bound to OS proc set {84}
OMP: pid 37632 tid 37818 thread 88 bound to OS proc set {88}
OMP: pid 37632 tid 37820 thread 90 bound to OS proc set {90}
OMP: pid 37632 tid 37815 thread 85 bound to OS proc set {85}
OMP: pid 37632 tid 37822 thread 92 bound to OS proc set {92}
OMP: pid 37632 tid 37819 thread 89 bound to OS proc set {89}
OMP: pid 37632 tid 37817 thread 87 bound to OS proc set {87}
OMP: pid 37632 tid 37821 thread 91 bound to OS proc set {91}
OMP: pid 37632 tid 37824 thread 94 bound to OS proc set {94}
OMP: pid 37632 tid 37823 thread 93 bound to OS proc set {93}
OMP: pid 37632 tid 37825 thread 95 bound to OS proc set {95}
OMP: pid 37632 tid 37816 thread 86 bound to OS proc set {86}
OMP: pid 37632 tid 37804 thread 74 bound to OS proc set {74}
what is a LLM? and why should i care?
A Large Language Model (LLM) is a type of artificial intelligence (AI) that can process and generate human-like text based on the input it receives. LLMs are trained on vast amounts of text data, which allows them to learn patterns, relationships, and context in language. This enables them to generate coherent and often informative responses to user queries.
Here are some reasons why you should care about LLMs:
1. **Improved search and content generation:** LLMs can help improve search results by providing more accurate and relevant information. They can also generate content such as articles, blog posts, and even entire books.
2. **Personalized experiences:** LLMs can be used to create personalized experiences for users. For example, they can generate customized news feeds, product recommendations, or even entire stories based on a user's interests and preferences.
3. **Customer support:** LLMs can be used to provide 24/7 customer support by answering frequently asked questions, helping with simple transactions, and even handling complex issues.
4. **Language learning:** LLMs can help language learners by providing personalized feedback, practicing conversations, and even generating language learning materials.
5. **Content creation:** LLMs can be used to create content such as dialogue, scripts, and even entire stories. This can help writers, filmmakers, and other creators to generate ideas and develop their projects.
Some popular examples of LLMs include:
1. **Chatbots:** Many companies use LLMs to power their chatbots, which can help customers with simple transactions, answer frequently asked questions, and even provide customer support.
2. **Virtual assistants:** LLMs are used in virtual assistants like Siri, Google Assistant, and Alexa to provide information, set reminders, and even control smart home devices.
3. **Language translation:** LLMs are used in language translation tools like Google Translate to provide accurate and context-specific translations.
Overall, LLMs have the potential to revolutionize the way we interact with technology, from simple tasks like search and customer support to more complex tasks like content creation and language learning. As LLMs continue to evolve, we can expect to see even more innovative applications and uses for these powerful tools. [end of text]
Your experiment path is /home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0
To display your profiling results:
###########################################################################################################################################################################################################################################
# LEVEL | REPORT | COMMAND #
###########################################################################################################################################################################################################################################
# Functions | Cluster-wide | maqao lprof -df xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
# Functions | Per-node | maqao lprof -df -dn xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
# Functions | Per-process | maqao lprof -df -dp xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
# Functions | Per-thread | maqao lprof -df -dt xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
# Loops | Cluster-wide | maqao lprof -dl xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
# Loops | Per-node | maqao lprof -dl -dn xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
# Loops | Per-process | maqao lprof -dl -dp xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
# Loops | Per-thread | maqao lprof -dl -dt xp=/home/eoseret/Tools/QaaS/qaas_runs/ip-172-31-47-249.ec2.internal/175-802-9624/llama.cpp/run/oneview_runs/compilers/armclang_3/oneview_results_1758030552/tools/lprof_npsu_run_0 #
###########################################################################################################################################################################################################################################