Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (119.16 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3.00 / 3 ] Optimization level option is correctly used
[ 3.00 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3.00 / 3 ] Architecture specific option -march=sapphirerapids is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 2.73 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (66.73%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (22.60%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (66.54%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.19%) lower than cumulative innermost loop coverage (66.54%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (2.38%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Analysis | Penalty Score |
---|---|---|
►Loop 690 - libqmcwfs.so | Execution Time: 22 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 % | |
►Data Access Issues | 8 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each. | 8 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each. | 8 |
►Loop 692 - libqmcwfs.so | Execution Time: 20 % - Vectorization Ratio: 20.93 % - Vector Length Use: 15.12 % | |
►Data Access Issues | 7 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 5 issues (= instructions) costing 1 point each. | 5 |
►Vectorization Roadblocks | 2 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 |
►Inefficient Vectorization | 5 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE) - Simplify data access and try to get stride 1 access. There are 5 issues (= instructions) costing 1 point each. | 5 |
►Loop 480 - libqmcparticle_omptarget.so | Execution Time: 8 % - Vectorization Ratio: 12.24 % - Vector Length Use: 14.03 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 1 issues (= instructions) costing 4 points each. | 4 |
►Loop 226 - libqmcparticle_omptarget.so | Execution Time: 5 % - Vectorization Ratio: 27.27 % - Vector Length Use: 15.91 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 30 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 13 issues ( = data accesses) costing 2 point each. | 26 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 |
►Vectorization Roadblocks | 30 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 13 issues ( = data accesses) costing 2 point each. | 26 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 |
►Loop 441 - libqmcparticle_omptarget.so | Execution Time: 1 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 % | |
►Loop Computation Issues | 16 | |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each. | 16 |
►Loop 565 - libqmcwfs.so | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 10.00 % | |
►Control Flow Issues | 1000 | |
○ | [SA] Too many paths (6561 paths) - Simplify control structure. There are 6561 issues ( = paths) costing 1 point, limited to 1000. | 1000 |
►Vectorization Roadblocks | 1000 | |
○ | [SA] Too many paths (6561 paths) - Simplify control structure. There are 6561 issues ( = paths) costing 1 point, limited to 1000. | 1000 |
►Loop 691 - libqmcwfs.so | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 12.50 % | |
►Loop Computation Issues | 4 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
►Loop 696 - libqmcwfs.so | Execution Time: 0 % - Vectorization Ratio: 11.11 % - Vector Length Use: 13.89 % | |
►Data Access Issues | 14 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each. | 10 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 4 issues (= instructions) costing 1 point each. | 4 |
►Vectorization Roadblocks | 10 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 5 issues ( = data accesses) costing 2 point each. | 10 |
►Inefficient Vectorization | 4 | |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT) - Simplify data access and try to get stride 1 access. There are 4 issues (= instructions) costing 1 point each. | 4 |
►Loop 494 - libqmcwfs.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 % | |
►Data Access Issues | 16 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 6 issues ( = arrays) costing 2 points each | 12 |
►Vectorization Roadblocks | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Loop 742 - libqmcwfs.so | Execution Time: 0 % - Vectorization Ratio: 100.00 % - Vector Length Use: 50.00 % | |
►Data Access Issues | 28 | |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 2 issues ( = arrays) costing 2 points each | 4 |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 24 issues (= instructions) costing 1 point each. | 24 |
►Inefficient Vectorization | 24 | |
○ | [SA] Presence of special instructions executing on a single port (SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 24 issues (= instructions) costing 1 point each. | 24 |