Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (1394.05 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Optimization level option -O2 is used
To have better performances, it is advised to help the compiler by using a proper optimization level (-O2)
[ 3 / 3 ] Helper debug compilation options -g and -fno-omit-frame-pointer are used
-g option gives access to debugging informations, such are source locations and -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 0 / 3 ] Architecture specific options are not used
Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ).
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.01 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (87.42%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (11.79%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (54.00%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (33.42%) lower than cumulative innermost loop coverage (54%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (0.03%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Module | Analysis | Penalty Score | Coverage (%) | Vectorization Ratio (%) | Vector Length Use (%) |
---|---|---|---|---|---|---|
►95225 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 2 | 11.79 | 0 | 25 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 | ||||
►95248 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 6 | 10.51 | 5.65 | 27.75 |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 | ||||
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
►164712 | cp2k.ssmp | Inefficient vectorization. | 24 | 7.77 | 100 | 50 |
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 9 issues ( = arrays) costing 2 points each | 18 | ||||
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►95249 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 2 | 7.04 | 0 | 25 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 | ||||
►95224 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 11 | 4.64 | 0 | 20.83 |
○ | [SA] Too many paths (5 paths) - Simplify control structure. There are 5 issues ( = paths) costing 1 point each with a malus of 4 points. | 9 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►164710 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 23 | 2.54 | 9.64 | 27.26 |
○ | [SA] Too many paths (17 paths) - Simplify control structure. There are 17 issues ( = paths) costing 1 point each with a malus of 4 points. | 21 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
○209992 | cp2k.ssmp | Partial or unexisting vectorization - No issue detected | 0 | 2.23 | 78.95 | 84.21 |
►111102 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 1003 | 2.22 | 1.3 | 25.27 |
○ | [SA] Too many paths (1297 paths) - Simplify control structure. There are 1297 issues ( = paths) costing 1 point, limited to 1000. | 1000 | ||||
○ | [SA] Presence of calls - Inline either by compiler or by hand and use SVML for libm calls. There are 3 issues (= calls) costing 1 point each. | 3 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►95220 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 21 | 2.08 | 0 | 16.5 |
○ | [SA] Too many paths (15 paths) - Simplify control structure. There are 15 issues ( = paths) costing 1 point each with a malus of 4 points. | 19 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►95226 | cp2k.ssmp | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 4 | 2.05 | 32.08 | 40.57 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |