Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (225.59 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (100.00%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 99.86% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 99.86% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (76.50%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (80.60%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.98%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Functions mostly use all threads
Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.00%)
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (19.40%) lower than cumulative innermost loop coverage (80.60%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 76 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 19 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
[ 4 / 4 ] Application profile is long enough (117.29 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (98.34%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 194.82% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 97.41% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (75.53%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (79.57%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.89%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (11.11%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (18.76%) lower than cumulative innermost loop coverage (79.57%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 75 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 18 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 4 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
[ 4 / 4 ] Application profile is long enough (63.55 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (95.19%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 372.62% of observed threads are actually active
[ 4 / 4 ] CPU activity is good
CPU cores are active 93.16% of time
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (72.58%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (76.51%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.72%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (20.88%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (18.68%) lower than cumulative innermost loop coverage (76.51%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 72 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 18 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
[ 4 / 4 ] Application profile is long enough (36.43 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improves the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (89.52%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 692.74% of observed threads are actually active
[ 3 / 4 ] CPU activity is below 90% (86.61%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (68.54%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (72.19%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.48%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (36.33%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (17.33%) lower than cumulative innermost loop coverage (72.19%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 68 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 17 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
[ 4 / 4 ] Application profile is long enough (22.90 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (79.92%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 1236.93% of observed threads are actually active
[ 3 / 4 ] CPU activity is below 90% (77.34%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (61.23%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (64.49%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (99.10%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (41.58%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (15.43%) lower than cumulative innermost loop coverage (64.49%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 61 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 15 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 3 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
[ 4 / 4 ] Application profile is long enough (16.19 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (66.28%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 2132.69% of observed threads are actually active
[ 2 / 4 ] CPU activity is below 90% (66.70%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (50.69%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (53.37%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (98.69%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (82.27%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (12.91%) lower than cumulative innermost loop coverage (53.37%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 50 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 12 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
[ 4 / 4 ] Application profile is long enough (13.88 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (56.37%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 2916.66% of observed threads are actually active
[ 2 / 4 ] CPU activity is below 90% (60.83%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (43.15%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (45.43%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (98.45%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (70.11%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (10.94%) lower than cumulative innermost loop coverage (45.43%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 43 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 10 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 2 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
[ 4 / 4 ] Application profile is long enough (12.75 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 3 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 3 / 3 ] Optimization level option is correctly used
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics.
[ 3 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated.
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (49.11%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Threads activity is good
On average, more than 3636.99% of observed threads are actually active
[ 2 / 4 ] CPU activity is below 90% (56.91%)
CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (37.56%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (39.54%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 4 / 4 ] Affinity is good (98.29%)
Threads are not migrating to CPU cores: probably successfully pinned
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 0 / 3 ] Too many functions do not use all threads
Functions running on a reduced number of threads (typically sequential code) cover at least 10% of application walltime (77.98%). Check both "Max Inclusive Time Over Threads" and "Nb Threads" in Functions or Loops tabs and consider parallelizing sequential regions or improving parallelization of regions running on a reduced number of threads
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (9.57%) lower than cumulative innermost loop coverage (39.54%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions)
Loop ID | Analysis | Penalty Score |
---|---|---|
○Loop 9 - kmeans-acfl-O3-funroll-soa | Execution Time: 37 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.61 % | |
►Loop 8 - kmeans-acfl-O3-funroll-soa | Execution Time: 9 % - Vectorization Ratio: 0.00 % - Vector Length Use: 16.07 % | |
►Loop Computation Issues | 2 | |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Control Flow Issues | 4 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Data Access Issues | 4 | |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
►Vectorization Roadblocks | 8 | |
○ | [SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues ( = paths) costing 1 point each. | 2 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 |
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 |
►Loop 6 - kmeans-acfl-O3-funroll-soa | Execution Time: 1 % - Vectorization Ratio: 0.00 % - Vector Length Use: 23.75 % | |
►Loop Computation Issues | 6 | |
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 |
○ | [SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points. | 2 |
►Data Access Issues | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |
►Vectorization Roadblocks | 12 | |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 3 issues ( = indirect data accesses) costing 4 point each. | 12 |