Cascade Lake G++ O2 | Cascade Lake G++ O3 | Cascade Lake G++ Ofast | Cascade Lake Clang O2 | Cascade Lake Clang O3 | Cascade Lake Clang O3 + ffast-math | Cascade Lake ICPX O2 | Cascade Lake ICPX O3 | Cascade Lake ICPX Ofast |
---|---|---|---|---|---|---|---|---|
[ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. | [ 3 / 3 ] Host configuration allows retrieval of all necessary metrics. |
[ 0 / 0 ] Fastmath not used Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions. | [ 0 / 0 ] Fastmath not used Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions. | Not available for this run | [ 0 / 0 ] Fastmath not used Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions. | [ 0 / 0 ] Fastmath not used Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions. | [ 0 / 0 ] Fastmath not used Consider to add ffast-math to compilation flags (or replace -O3 with -Ofast) to unlock potential extra speedup by relaxing floating-point computation consistency. Warning: floating-point accuracy may be reduced and the compliance to IEEE/ISO rules/specifications for math functions will be relaxed, typically 'errno' will no longer be set after calling some math functions. | Not available for this run | Not available for this run | Not available for this run |
[ 0 / 3 ] Compilation of some functions is not optimized for the target processor Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor Application run on the SKYLAKE micro-architecture while the code was specialized for cascadelake. Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). | [ 0 / 3 ] Compilation of some functions is not optimized for the target processor Architecture specific options are needed to produce efficient code for a specific processor ( -x(target) or -ax(target) ). | [ 2.63 / 3 ] Architecture specific option -x Host is used | [ 2.84 / 3 ] Architecture specific option -x Host is used | [ 2.80 / 3 ] Architecture specific option -x Host is used |
[ 2.87 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 2.88 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 2.84 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case. | [ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case. | [ 0 / 3 ] Most of time spent in analyzed modules comes from functions without compilation information Functions without compilation information (typically not compiled with -g and -grecord-gcc-switches) cumulate 100.00% of the time spent in analyzed modules. Check that -g and -grecord-gcc-switches are present. Remark: if -g and -grecord-gcc-switches are indeed used, this can also be due to some compiler built-in functions (typically math) or statically linked libraries. This warning can be ignored in that case. | [ 2.63 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 2.84 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. | [ 2.80 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer -g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling. |
[ 4 / 4 ] Application profile is long enough (118.60 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (118.64 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (34.17 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (32.28 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (32.35 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (31.70 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (29.93 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (29.85 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. | [ 4 / 4 ] Application profile is long enough (29.02 s) To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds. |
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code | [ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.00 % of the execution time) To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code |
[ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used | [ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1) To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy. | [ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1) To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy. | [ 0 / 3 ] Some functions are compiled with a low optimization level (O0 or O1) To have better performances, it is advised to help the compiler by using a proper optimization level (-O2 of higher). Warning, depending on compilers, faster optimization levels can decrease numeric accuracy. | [ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used | [ 3 / 3 ] Optimization level option is correctly used |
[ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. | [ 1 / 1 ] Lstopo present. The Topology lstopo report will be generated. |
Cascade Lake G++ O2 | Cascade Lake G++ O3 | Cascade Lake G++ Ofast | Cascade Lake Clang O2 | Cascade Lake Clang O3 | Cascade Lake Clang O3 + ffast-math | Cascade Lake ICPX O2 | Cascade Lake ICPX O3 | Cascade Lake ICPX Ofast |
---|---|---|---|---|---|---|---|---|
[ 4 / 4 ] CPU activity is good CPU cores are active 99.68% of time | [ 4 / 4 ] CPU activity is good CPU cores are active 99.65% of time | [ 3 / 4 ] CPU activity is below 90% (77.52%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 0 / 4 ] CPU activity is below 90% (28.33%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 0 / 4 ] CPU activity is below 90% (28.35%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (75.22%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 0 / 4 ] CPU activity is below 90% (26.78%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 0 / 4 ] CPU activity is below 90% (26.78%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. | [ 3 / 4 ] CPU activity is below 90% (73.69%) CPU cores are idle more than 10% of time. Threads supposed to run on these cores are probably IO/sync waiting. Some hints: use faster filesystems to read/write data, improve parallel load balancing and/or scheduling. |
[ 0 / 4 ] Affinity stability is lower than 90% (23.90%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 0 / 4 ] Affinity stability is lower than 90% (23.88%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 3 / 4 ] Affinity stability is lower than 90% (75.06%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 0 / 4 ] Affinity stability is lower than 90% (20.44%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 0 / 4 ] Affinity stability is lower than 90% (20.32%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 3 / 4 ] Affinity stability is lower than 90% (72.55%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 0 / 4 ] Affinity stability is lower than 90% (18.80%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 0 / 4 ] Affinity stability is lower than 90% (18.76%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. | [ 3 / 4 ] Affinity stability is lower than 90% (70.62%) Threads are often migrating to other CPU cores/threads. For OpenMP, typically set (OMP_PLACES=cores OMP_PROC_BIND=close) or (OMP_PLACES=threads OMP_PROC_BIND=spread). With OpenMPI + OpenMP, use --bind-to core --map-by node:PE=$OMP_NUM_THREADS --report-bindings. With IntelMPI + OpenMP, set I_MPI_PIN_DOMAIN=omp:compact or I_MPI_PIN_DOMAIN=omp:scatter and use -print-rank-map. |
[ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.09%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.19%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.04%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.02%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.03%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.02%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.15%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.04%) | [ 3 / 3 ] Functions mostly use all threads Functions running on a reduced number of threads (typically sequential code) cover less than 10% of application walltime (0.12%) |
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.01%) lower than cumulative innermost loop coverage (94.50%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.94%) lower than cumulative innermost loop coverage (94.35%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.91%) lower than cumulative innermost loop coverage (93.76%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (1.93%) lower than cumulative innermost loop coverage (92.92%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (2.06%) lower than cumulative innermost loop coverage (92.89%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (2.06%) lower than cumulative innermost loop coverage (92.78%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.81%) lower than cumulative innermost loop coverage (91.41%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.62%) lower than cumulative innermost loop coverage (91.94%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex | [ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.75%) lower than cumulative innermost loop coverage (91.85%) Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex |
[ 4 / 4 ] Threads activity is good On average, more than 996.76% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 996.48% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 239.18% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 283.31% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 283.48% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 217.01% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 267.81% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 267.77% of observed threads are actually active | [ 4 / 4 ] Threads activity is good On average, more than 203.89% of observed threads are actually active |
[ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. | [ 2 / 2 ] Less than 10% (0.00%) is spend in BLAS2 operations BLAS2 calls usually could make a poor cache usage and could benefit from inlining. |
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (94.50%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (94.35%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (93.76%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (92.92%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (92.89%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (92.78%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.41%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.94%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (91.85%) If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances. |
[ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations | [ 3 / 3 ] Less than 10% (0.00%) is spend in BLAS1 operations It could be more efficient to inline by hand BLAS1 operations |
[ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) | [ 2 / 2 ] Less than 10% (0.00%) is spend in Libm/SVML (special functions) |
[ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (90.51%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (90.41%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (88.71%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (88.71%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (86.29%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (88.21%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (79.96%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (86.86%), representing an hotspot for the application | [ 4 / 4 ] Loop profile is not flat At least one loop coverage is greater than 4% (85.53%), representing an hotspot for the application |
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (95.51%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (95.29%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.67%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.85%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.95%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (94.84%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.22%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.57%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. | [ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (92.60%) If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances. |
Analysis | r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | |
---|---|---|---|---|---|---|---|---|---|---|
Loop Computation Issues | Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Presence of a large number of scalar integer instructions | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | |
Control Flow Issues | Presence of 2 to 4 paths | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
Presence of more than 4 paths | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | |
Non-innermost loop | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Data Access Issues | Presence of special instructions executing on a single port | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 1 | 1 |
More than 20% of the loads are accessing the stack | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |
Vectorization Roadblocks | Presence of 2 to 4 paths | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 |
Presence of more than 4 paths | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | |
Non-innermost loop | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Inefficient Vectorization | Presence of special instructions executing on a single port | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 1 | 1 |