Help is available by moving the cursor above any symbol or by checking MAQAO website.
[ 4 / 4 ] Application profile is long enough (26.3 s)
To have good quality measurements, it is advised that the application profiling time is greater than 10 seconds.
[ 2.98 / 3 ] Optimization level option is correctly used
[ 2.98 / 3 ] Most of time spent in analyzed modules comes from functions compiled with -g and -fno-omit-frame-pointer
-g option gives access to debugging informations, such are source locations. -fno-omit-frame-pointer improve the accuracy of callchains found during the application profiling.
[ 2.98 / 3 ] Architecture specific option -march=native is used
[ 2 / 2 ] Application is correctly profiled ("Others" category represents 0.35 % of the execution time)
To have a representative profiling, it is advised that the category "Others" represents less than 20% of the execution time in order to analyze as much as possible of the user code
[ 4 / 4 ] Enough time of the experiment time spent in analyzed loops (51.88%)
If the time spent in analyzed loops is less than 30%, standard loop optimizations will have a limited impact on application performances.
[ 4 / 4 ] Loop profile is not flat
At least one loop coverage is greater than 4% (42.24%), representing an hotspot for the application
[ 4 / 4 ] Enough time of the experiment time spent in analyzed innermost loops (51.27%)
If the time spent in analyzed innermost loops is less than 15%, standard innermost loop optimizations such as vectorisation will have a limited impact on application performances.
[ 3 / 3 ] Less than 10% (0%) is spend in BLAS1 operations
It could be more efficient to inline by hand BLAS1 operations
[ 3 / 3 ] Cumulative Outermost/In between loops coverage (0.61%) lower than cumulative innermost loop coverage (51.27%)
Having cumulative Outermost/In between loops coverage greater than cumulative innermost loop coverage will make loop optimization more complex
[ 2 / 2 ] Less than 10% (0%) is spend in Libm/SVML (special functions)
[ 2 / 2 ] Less than 10% (0%) is spend in BLAS2 operations
BLAS2 calls usually could make a poor cache usage and could benefit from inlining.
Loop ID | Module | Analysis | Penalty Score | Coverage (%) | Vectorization Ratio (%) | Vector Length Use (%) |
---|---|---|---|---|---|---|
►88 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 9 | 42.24 | 35.93 | 16.99 |
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 | ||||
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 | ||||
►57 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 6 | 2.6 | 50 | 22.92 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 3 issues ( = data accesses) costing 2 point each. | 6 | ||||
►95 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 54 | 2.36 | 94.44 | 43.75 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 44 issues (= instructions) costing 1 point each. | 44 | ||||
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 | ||||
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 2 issues ( = arrays) costing 2 points each | 4 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►90 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 2 | 1.85 | 50 | 15.63 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 1 issues ( = data accesses) costing 2 point each. | 2 | ||||
►99 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 60 | 1.46 | 95.12 | 43.29 |
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM, BROADCAST) - Simplify data access and try to get stride 1 access. There are 22 issues (= instructions) costing 1 point each. | 22 | ||||
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each. | 16 | ||||
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 4 issues ( = arrays) costing 2 points each | 8 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 1 issues (= instructions) costing 4 points each. | 4 | ||||
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 | ||||
►87 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 9 | 0.38 | 0 | 12.5 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 | ||||
○ | [SA] Several paths (3 paths) - Simplify control structure or force the compiler to use masked instructions. There are 3 issues ( = paths) costing 1 point each. | 3 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
►94 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 4 | 0.32 | 50 | 18.75 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues ( = data accesses) costing 2 point each. | 4 | ||||
►82 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 74 | 0.2 | 34.43 | 14.45 |
○ | [SA] Too many paths (70 paths) - Simplify control structure. There are 70 issues ( = paths) costing 1 point each with a malus of 4 points. | 74 | ||||
○ | Warning! Some static analysis are missing because the loop has too many paths. Use a higher value for --maximal_path_number option. | 0 | ||||
►86 | exec | Partial or unexisting vectorization - Use pragma to force vectorization and check potential dependencies between array access. | 18 | 0.17 | 0 | 10.16 |
○ | [SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 4 issues ( = data accesses) costing 2 point each. | 8 | ||||
○ | [SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 1 issues ( = indirect data accesses) costing 4 point each. | 4 | ||||
○ | [SA] Several paths (4 paths) - Simplify control structure or force the compiler to use masked instructions. There are 4 issues ( = paths) costing 1 point each. | 4 | ||||
○ | [SA] Non innermost loop (InBetween) - Collapse loop with innermost ones. This issue costs 2 points. | 2 | ||||
►105 | exec | Inefficient vectorization. | 40 | 0.11 | 100 | 45.65 |
○ | [SA] Presence of expensive FP instructions - Perform hoisting, change algorithm, use SVML or proper numerical library or perform value profiling (count the number of distinct input values). There are 4 issues (= instructions) costing 4 points each. | 16 | ||||
○ | [SA] Presence of special instructions executing on a single port (INSERT/EXTRACT, BLEND/MERGE, SHUFFLE/PERM) - Simplify data access and try to get stride 1 access. There are 8 issues (= instructions) costing 1 point each. | 8 | ||||
○ | [SA] Inefficient vectorization: more than 10% of the vector loads instructions are unaligned - When allocating arrays, don’t forget to align them. There are 3 issues ( = arrays) costing 2 points each | 6 | ||||
○ | [SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points. | 4 | ||||
○ | [SA] Presence of expensive instructions (GATHER/SCATTER) - Use array restructuring. There are 1 issues (= instructions) costing 4 points each. | 4 | ||||
○ | [SA] Inefficient vectorization: use of shorter than available vector length - Force compiler to use proper vector length. CAUTION: use of 512 bits vectors could be more expensive than 256 bits on some processors. Use intrinsics (costly and not portable). The issue costs 2 points. | 2 | ||||
○ | Warning! There is no dynamic data for this loop. Some checks can not been performed. | 0 |